Abstract

If A is a real symmetric matrix and P is an orthogonal projection onto a hyperplane, then we derive a formula for the Moore–Penrose inverse of PAP. As an application, we obtain a formula for the Moore–Penrose inverse of an Euclidean distance matrix (EDM) which generalizes formulae for the inverse of a EDM in the literature. To an invertible spherical EDM, we associate a Laplacian matrix (which we define as a positive semidefinite n × n matrix of rank n − 1 and with zero row sums) and prove some properties. Known results for distance matrices of trees are derived as special cases. In particular, we obtain a formula due to Graham and Lovász for the inverse of the distance matrix of a tree. It is shown that if D is a nonsingular EDM and L is the associated Laplacian, then D −1 − L is nonsingular and has a nonnegative inverse. Finally, infinitely divisible matrices are constructed using EDMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.