Abstract

This paper presents some explicit lower bound estimates of logarithmic Sobolev constant for diffusion processes on a compact Riemannian manifold with negative Ricci curvature. Let Ric≧−K for some K>0 and d, D be respectively the dimension and the diameter of the manifold. If the boundary of the manifold is either empty or convex, then the logarithmic Sobolev constant for Brownian motion is not less than

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.