Abstract
Consider a sequence of real data points $X_{1},\ldots ,X_{n}$ with underlying means $\theta ^{*}_{1},\dots ,\theta ^{*}_{n}$. This paper starts from studying the setting that $\theta ^{*}_{i}$ is both piecewise constant and monotone as a function of the index $i$. For this, we establish the exact minimax rate of estimating such monotone functions, and thus give a nontrivial answer to an open problem in the shape-constrained analysis literature. The minimax rate under the loss of the sum of squared errors involves an interesting iterated logarithmic dependence on the dimension, a phenomenon that is revealed through characterizing the interplay between the isotonic shape constraint and model selection complexity. We then develop a penalized least-squares procedure for estimating the vector $\theta ^{*}=(\theta^{*}_{1},\dots ,\theta ^{*}_{n})^{\mathsf{T}}$. This estimator is shown to achieve the derived minimax rate adaptively. For the proposed estimator, we further allow the model to be misspecified and derive oracle inequalities with the optimal rates, and show there exists a computationally efficient algorithm to compute the exact solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.