Abstract
Independent random samples are drawn from k (≥ 2) populations, having probability density functions belonging to a general truncation parameter family. The populations associated with the smallest and the largest truncation parameters are called the lower extreme population (LEP) and the upper extreme population (UEP), respectively. For the goal of selecting the LEP (UEP), we consider the natural selection rule, which selects the population corresponding to the smallest (largest) of k maximum likelihood estimates as the LEP (UEP), and study the problem of estimating the truncation parameter of the selected population. We unify some of the existing results, available in the literature for specific distributions, by deriving the uniformly minimum variance unbiased estimator (UMVUE) for the truncation parameter of the selected population. The conditional unbiasedness of the UMVUE is also checked. The cases of the left and the right truncation parameter families are dealt with separately. Finally, we consider an application to the Pareto probability model, where the performances of the UMVUE and three other natural estimators are compared with each other, under the mean squared error criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.