Abstract

We consider the problem of making statistical inference on unknown parameters of a lognormal distribution under the assumption that samples are progressively censored. The maximum likelihood estimates (MLEs) are obtained by using the expectation-maximization algorithm. The observed and expected Fisher information matrices are provided as well. Approximate MLEs of unknown parameters are also obtained. Bayes and generalized estimates are derived under squared error loss function. We compute these estimates using Lindley's method as well as importance sampling method. Highest posterior density interval and asymptotic interval estimates are constructed for unknown parameters. A simulation study is conducted to compare proposed estimates. Further, a data set is analysed for illustrative purposes. Finally, optimal progressive censoring plans are discussed under different optimality criteria and results are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call