Abstract
This paper concerns estimating a mixing density function $g$ and its derivatives based on iid observations from $f(x) = \int f(x \mid \theta)g(\theta)d\theta$, where $f(x \mid \theta)$ is a known exponential family of density functions with respect to the counting measure on the set of nonnegative integers. Fourier methods are used to derive kernel estimators, upper bounds for their rate of convergence and lower bounds for the optimal rate of convergence. If $f(x \mid \theta_0) \geq \varepsilon^{x + 1} \forall x$, for some positive numbers $\theta_0$ and $\varepsilon$, then our estimators achieve the optimal rate of convergence $(\log n)^{-\alpha + m}$ for estimating the $m$th derivative of $g$ under a Lipschitz condition of order $\alpha > m$. The optimal rate of convergence is almost achieved when $(x!)^\beta f(x \mid \theta_0) \geq \varepsilon^{x + 1}$. Estimation of the mixing distribution function is also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.