Abstract

The fiber deformations of once-dried, bleached and never-dried unbleached kraft pulps were studied with respect to their behavior in high- and low-consistency refining. The pulps were stained with congo red to experimentally highlight areas where the arrangement of the fibrils was altered by refining such as dislocated zones or slip planes. The stained fibers were analyzed with conventional Metso Fiberlab but also with a novel prototype measurement device utilizing a color imaging setup. The local intensity of the stain in the fiber was expressed as degree of overall damage (Overall fiber damage index, OFDI). The rewetted zero span tensile index (RWZSTI) was used to verify the OFDI with respect to the pulp strength. High consistency refining resulted in a clear increase in the number of kinks which negatively influenced the pulp strength. The OFDI which was used to detect the intensity of local fiber defects also responded accordingly. A higher OFDI resulted in a lower pulp strength. Low consistency refining removed a significant amount of kinks and resulted in an increase in fiber swelling. A slight increase in fibrillation and a significant increase in flake-like fines were also observed. The OFDI, however, was not reduced in low consistency refining as it would be expected by the removal of less severe dislocations. One reason proposed here is that low consistency refining created new fiber pores that allowed the dye to penetrate into the fiber wall similarly as it does in the zones of the dislocations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call