Abstract
Partition of unities appears in many places in analysis. Typically it is generated by compactly supported functions with a certain regularity. In this paper we consider partition of unities obtained as integer-translates of entire functions restricted to finite intervals. We characterize the entire functions that lead to a partition of unity in this way, and we provide characterizations of the “cut-off” entire functions, considered as functions of a real variable, to have desired regularity. In particular we obtain partition of unities generated by functions with small support and desired regularity. Applied to Gabor analysis this leads to constructions of dual pairs of Gabor frames with low redundancy, generated by trigonometric polynomials with small support and desired regularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.