Abstract

We study an explicit two-level in time and three-point symmetric in space finite-difference scheme for 1D barotropic and full gas dynamics systems of equations. The scheme is a linearization at a constant background solution (with an arbitrary velocity) of finite-difference schemes with general viscous regularization. We enlarge recently proved sufficient conditions (on the Courant-like number) for \(L^2\)-dissipativity in the Cauchy problem for the schemes by deriving new bounds for the commutator of matrices of viscous and convective terms. We deal with the case of a kinetic regularization in more detail and specify sufficient conditions in this case where the mentioned matrices are closely connected. Importantly, these new sufficient conditions rapidly tend to the known necessary ones as the Mach number grows. Also several forms of setting a regularization parameter are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.