Abstract

The main aim of this study is to better understand the self-aggregation mechanism of amyloid-like elastin-derived fibers in order to design and produce new powerful drugs that will inhibit the onset of 'amyloidosis'. Atomic force microscopy (AFM), Congo Red birefringence assay and Thioflavin T fluorescence measurements were used to demonstrate the amyloid-like behavior of some fragments of elastin protein (exon 30 [EX30] and exon 28 [EX28]). Turbidimetry on apparent absorbance technique was used to investigate the effect either of enhancers or of inhibitors on the amyloidogenic elastin-like peptides. Circular-dichroism spectroscopy was used to study the secondary structures of the peptides. We used Congo Red birefringence assay, Thioflavin T fluorescence measurements and AFM measurements that are used commonly to demonstrate the formation of amyloids. The elastin fibrillogenesis is amyloid-like. Then, the elastin amyloidogenesis is inhibited by particular pentapeptides. We have reported herein that the fibrillogenesis of elastin-derived EX28 and EX30 polypeptides is facilitated significantly by the effect of sodium taurocholate bile salt and is inhibited by a classical inhibitor of Abeta-amyloid peptide, such as KLVFF, as well as by novel inhibitors, designed by us on the basis of some elastin sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.