Abstract

In this work, we investigate the two-step backward differentiation formula (BDF2) with nonuniform grids for the Allen-Cahn equation. We show that the nonuniform BDF2 scheme is energy stable under the time-step ratio restriction $r_k:=\tau_k/\tau_{k-1}<(3+\sqrt{17})/2\approx3.561.$ Moreover, by developing a novel kernel recombination and complementary technique, we show, for the first time, the discrete maximum principle of BDF2 scheme under the time-step ratio restriction $r_k<1+\sqrt{2}\approx 2.414$ and a practical time step constraint. The second-order rate of convergence in the maximum norm is also presented. Numerical experiments are provided to support the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.