Abstract

In this paper we present results for the existence of classical solutions of a hydrodynamical system modeling the flow of nematic liquid crystals. The system consists of a coupled system of Navier-Stokes equations and various kinematic transport equations for the molecular orientations. A formal physical derivation of the induced elastic stress using least action principle reflects the special coupling between the transport and the induced stress terms. The derivation and the analysis of the system falls into a general energetic variational framework for complex fluids with elastic effects due to the presence of nontrivial microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.