Abstract

AbstractAn integer polyhedron is called empty if it does not contain integer points other than its vertices. In this chapter we give the classification of empty tetrahedra and the classification of pyramids whose integer points are contained in the base of pyramids in \(\mathbb{R}^{3}\). Later in the book we essentially use the classification of the mentioned pyramids for studying faces of multidimensional continued fractions. In particular, the describing of such pyramids simplifies the deductive algorithm of Chap. 20 in the three-dimensional case. We continue with two open problems related to empty objects in lattices. The first one is a problem of description of empty simplices in dimensions greater than 3. The second is the lonely runner conjecture. We conclude this chapter with a proof of a theorem on the classification of empty tetrahedra.KeywordsInteger PointInteger LatticeLeft CosetUniversal Covering SpaceEmpty TriangleThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.