Abstract

We consider the problem of lossless compression of individual sequences using finite-state (FS) machines, from the perspective of the best achievable empirical cumulant generating function (CGF) of the code length, i.e., the normalized logarithm of the empirical average of the exponentiated code length. Since the probabilistic CGF is minimized in terms of the Renyi entropy of the source, one of the motivations of this study is to derive an individual-sequence analogue of the Renyi entropy, in the same way that the FS compressibility is the individual-sequence counterpart of the Shannon entropy. We consider the CGF of the code-length both from the perspective of fixed-to-variable (F-V) length coding and the perspective of variable-to-variable (V-V) length coding, where the latter turns out to yield a better result, that coincides with the FS compressibility. We also extend our results to compression with side information, available at both the encoder and decoder. In this case, the V-V version no longer coincides with the FS compressibility, but results in a different complexity measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.