Abstract
A concept of emergence was recently introduced in [5] in order to quantify the richness of possible statistical behaviors of orbits of a given dynamical system. In this paper, we develop this concept and provide several new definitions, results, and examples. We introduce the notion of topological emergence of a dynamical system, which essentially evaluates how big the set of all its ergodic probability measures is. On the other hand, the metric emergence of a particular reference measure (usually Lebesgue) quantifies how non-ergodic this measure is. We prove fundamental properties of these two emergences, relating them with classical concepts such as Kolmogorov's ϵ-entropy of metric spaces and quantization of measures. We also relate the two types of emergences by means of a variational principle. Furthermore, we provide several examples of dynamics with high emergence. First, we show that the topological emergence of some standard classes of hyperbolic dynamical systems is essentially the maximal one allowed by the ambient. Secondly, we construct examples of smooth area-preserving diffeomorphisms that are extremely non-ergodic in the sense that the metric emergence of the Lebesgue measure is essentially maximal. These examples confirm that super-polynomial emergence indeed exists, as conjectured in [5]. Finally, we prove that such examples are locally generic among smooth diffeomorphisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advances in Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.