Abstract
The cubic interactions in a discrete system of four weakly nonlinear waves propagating in a conservative dispersive medium are studied. By reducing the problem to a single ordinary differential equation governing the motion of a classical particle in a quartic potential, the complete explicit branches of solutions are presented, either steady, periodic, breather or pump, thus recovering or generalizing some already published results in hydrodynamics, nonlinear optics and plasma physics, and presenting some new ones. Various stability criteria are also formulated for steady equilibria. Theory is applied to deep-water gravity waves for which models of isolated quartets are described, including bidirectional standing waves and quadri-directional travelling waves, steady or not, resonant or not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.