Abstract

We study elastostatic boundary value problems with a conical boundary point by the method of integral equations. The equations of such problems are singular. In the case of a smooth surface, we construct a regularizer for these equations; in the case of a surface with a conical point, the regularizer is constructed in such a way as to ensure that the kernel of the regularized equation belongs to the class B and satisfies the assumptions of the Fredholm alternative theorem. We analyze the properties of elastic potentials in the case of a surface with a conical point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.