Abstract

The paper sets forth a novel eigenvalue interlacing property across the finite-state birth-death process intensity matrix and two clearly identified submatrices as an extension of Cauchy’s interlace theorem for Hermitian matrix eigenvalues. A supplemental proof involving an examination of probabilities acquired from specific movements across states and a derivation of a form for the eigenpolynomial of the matrix through convolution and Laplace transform is then presented towards uncovering a similar characteristic for the general Markov chain transition rate matrix. Consequently, the proposition generates bounds for each eigenvalue of the original matrix, easing numerical computation. To conclude, the applicability of the property to some real square matrices upon transformation is explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.