Abstract
Big data is characterized in many circles in terms of the three V's – volume, velocity and variety. Although most of us can sense palpable opportunities presented by big data there are overwhelming challenges, at many levels, turning such data into actionable information or building entities that efficiently work together based on it. This chapter discusses ways to potentially reduce the volume and velocity aspects of certain kinds of data (with sparsity and structure), while acquiring itself. Such reduction can alleviate the challenges to some extent at all levels, especially during the storage, retrieval, communication, and analysis phases. In this chapter we will conduct a non-technical survey, bringing together ideas from some recent and current developments. We focus primarily on Compressive Sensing and sparse Fast Fourier Transform or Sparse Fourier Transform. Almost all natural signals or data streams are known to have some level of sparsity and structure that are key for these efficiencies to take place.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.