Abstract

In this work, we study the efficiency of developed OpenFOAM-based parallel solver for the simulation of heat transfer in and around the electrical power cables. First benchmark problem considers three cables directly buried in the soil. We study and compare the efficiency of conjugate gradient solver with diagonal incomplete Cholesky (DIC) preconditioner, generalized geometric-algebraic multigrid GAMG solver from OpenFOAM and conjugate gradient solver with GAMG multigrid solver used as preconditioner. The convergence and parallel scalability of the solvers are presented and analyzed on quadrilateral and acute triangle meshes. Second benchmark problem considers a more complicated case, when cables are placed into plastic pipes, which are buried in the soil. Then a coupled multi-physics problem is solved, which describes the heat transfer in cables, air and soil. Non-standard parallelization approach is presented for multi-physics solver. We show the robustness of selected parallel preconditioners. Parallel numerical tests are performed on the cluster of multicore computers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.