Abstract

This paper introduces the idea of hierarchical modelling to derive the variance (i.e. squared scale) parameter of the hierarchical normal and inverse gamma model using E-Bayesian estimation. We propose the idea of a hierarchical probability density function instead of the traditional hierarchical prior density function. We aim to derive E-Bayesian estimators with respect to the conjugate prior distribution IG(a,b) on the basis of the Balanced squared error loss function (BSELF) and Stein's loss function (STLF) for the unknown squared scale parameter. We use E-Posterior Risk as an evaluation standard. This study also intends to reveal the relationship among the E-Bayesian estimates under three distinct bivariate independent prior distributions of hyperparameters. The asymptotic properties of the E-Bayesian estimators are also evaluated. Monte Carlo simulations are prosecuted to study the efficiency of E-Bayesian estimators empirically and also, a real data application is analysed for exemplifying purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.