Abstract
To get maximum performance on the many-core graphics processors it is important to have an even balance of the workload so that all processing units contribute equally to the task at hand. This can be hard to achieve when the cost of a task is not known beforehand and when new sub-tasks are created dynamically during execution. With the recent advent of scatter operations and atomic hardware primitives it is now possible to bring some of the more elaborate dynamic load balancing schemes from the conventional SMP systems domain to the graphics processor domain.We have compared four different dynamic load balancing methods to see which one is most suited to the highly parallel world of graphics processors. Three of these methods were lock-free and one was lock-based. We evaluated them on the task of creating an octree partitioning of a set of particles. The experiments showed that synchronization can be very expensive and that new methods that take more advantage of the graphics processors features and capabilities might be required. They also showed that lock-free methods achieves better performance than blocking and that they can be made to scale with increased numbers of processing units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.