Abstract

A class C of graphs is said to be dually compact closed if, for every infinite G ∈ C, each finite subgraph of G is contained in a finite induced subgraph of G which belongs to C. The class of trees and more generally the one of chordal graphs are dually compact closed. One of the main part of this paper is to settle a question of Hahn, Sands, Sauer and Woodrow by showing that the class of bridged graphs is dually compact closed. To prove this result we use the concept of constructible graph. A (finite or infinite) graph G is constructible if there exists a wellordering ≤ (called constructing ordering) of its vertices such that, for every vertex x which is not the smallest element, there is a vertex y < x which is adjacent to x and to every neighbor z of x with z < x. Finite graphs are constructible if and only if they are dismantlable. The case is different, however, with infinite graphs. A graph G for which every breadth-first search of G produces a particular constructing ordering of its vertices is called a BFS-constructible graph. We show that the class of BFS-constructible graphs is a variety (i.e., it is closed under weak retracts and strong products), that it is a subclass of the class of weakly modular graphs, and that it contains the class of bridged graphs and that of Helly graphs (bridged graphs being very special instances of BFS-constructible graphs). Finally we show that the class of intervalfinite pseudo-median graphs (and thus the one of median graphs) and the class of Helly graphs are dually compact closed, and that moreover every finite subgraph of an interval-finite pseudo-median graph (resp. a Helly graph) G is contained in a finite isometric pseudo-median

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call