Abstract

In this paper we present two approaches to duality in multiple objective linear programming. The first approach is based on a duality relation between maximal elements of a set and minimal elements of its complement. It offers a general duality scheme which unifies a number of known dual constructions and improves several existing duality relations. The second approach utilizes polarity between a convex polyhedral set and the epigraph of its support function. It leads to a parametric dual problem and yields strong duality relations, including those of geometric duality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.