Abstract

A new mathematical model of generalized magneto-thermo-viscoelasticity theories with memory-dependent derivatives (MDD) of dual-phase-lag heat conduction law is developed. The equations for one-dimensional problems including heat sources are cast into matrix form using the state space and Laplace transform techniques. The resulting formulation is applied to a problem for the whole space with a plane distribution of heat sources. It is also applied to a perfect conducting semi-space problem with a traction-free surface and plane distribution of heat sources located inside the medium. The inversion of the Laplace transforms is carried out using a numerical approach. Numerical results for the temperature, displacement, stress and heat flux distributions as well as the induced magnetic and electric fields are given and illustrated graphically. A comparison is made with the results obtained in the coupled theory. The impacts of the MDD heat transfer parameter and Alfven velocity on a viscoelastic material, for example, poly (methyl methacrylate) (Perspex) are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.