Abstract

This study presents an evaluation of the atmospheric factors influencing the post-processing for fast-response data of horizontal momentum, vertical wind component, temperature, and water vapor to measure turbulent fluxes. They are observed at the Ieodo ocean research station over the Yellow Sea during the period of October 2004 to February 2008. The post process methods employed here are composed of quality control and tilt correction for turbulent flux measurement. The present result of quality control on the fast-response data shows that total removal ratio of the data generally depends on the factors such as a wind speed, relative humidity, significant wave height, visibility, and stability parameter (z/L). Especially, the removal ratio of water vapor data is significantly increased on light wind and strong stability conditions. The results show that the total removal ratio of water vapor data increases when wind speed is less than 3 m s−1 and wave height is less than 1 m. The total removal ratio of water vapor data also increases with the value of the stability parameter. Three different algorithms of tilt correction methods (double rotation, triple rotation, and planar fit) are applied to correct the tilt of the sonic anemometer used in the observation. Friction velocities in near neutral state are greater than friction velocity in other states. Drag coefficients are categorized in terms of stabilities and seasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call