Abstract

We study a certain kind of linear codes, namely divisible codes, over finite fields. These codes, introduced by Harold N. Ward, have the property that all codeword weights share a common divisor larger than 1. These are interesting error-correcting codes because many optimal codes and/or classical codes exhibit nontrivial divisibility. We first introduce an upper bound on dimensions of divisible codes in terms of their weight spectrums, as well as a divisibility criteria for linear codes over arbitrary finite fields. Both the bound and the criteria are given by Ward, and these are the primary results that initiate this work. Our first result proves an equivalent condition of Ward's bound, which involves only some property of the weight distribution, but not any other properties (including the linearity) of the code. This equivalent condition consequently provides an alternative (and more elementary) proof of Ward's bound, and from the equivalence we extend Ward's bound to certain nonlinear codes. Another perspective of the equivalence gives rise to our second result, which studies weights modulo a prime power in divisible codes. This is generalized from weights modulo a prime power in linear codes, and yields much better results than the linear code version does. With a similar method we propound a new bound that is proved to be better than Ward's bound. Our third result concerns binary divisible codes of maximum dimension with given lengths. We start with level one and level two codes, which are well described from this point of view. For higher level codes we prove an induction theorem by using the binary version of the divisibility criteria, as well as Ward's bound and the new generated bound. Moreover, this induction theorem allows us to determine the exact bound and the codes that attain the bound for level three codes of relatively small length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.