Abstract

The graph connectivity is a fundamental concept in graph theory. In particular, it plays a vital role in applications related to the modern interconnection graphs, e.g., it can be used to measure the vulnerability of the corresponding graph, and is an important metric for reliability and fault tolerance of the graph. Here, firstly, we introduce two types of divided operations, named vertex-divided operation and edge-divided operation, respectively, as well as their inverse operations vertex-coincident operation and edge-coincident operation, to find some methods for splitting vertices of graphs. Secondly, we define a new connectivity, which can be referred to as divided connectivity, which differs from traditional connectivity, and present an equivalence relationship between traditional connectivity and our divided connectivity. Afterwards, we explore the structures of graphs based on the vertex-divided connectivity. Then, as an application of our divided operations, we show some necessary and sufficient conditions for a graph to be an Euler's graph. Finally, we propose some valuable and meaningful problems for further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.