Abstract

Traditional spectral unmixing methods are usually based on the linear mixture model (LMM) or nonlinear mixture model (NLMM), in which only the additive noise is considered. However, in hyperspectral applications, the additive, multiplicative, and mixed noises play important roles. In this paper, we propose an antinoise model for hyperspectral unmixing. In the antinoise model, all the additive, multiplicative and mixed noises are addressed. To deal with the problems faced by LMM or NLMM and to tackle the antinoise model, an antinoise model based hyperspectral unmixing method is presented, where block coordinate descent is employed to solve an approximated $L_0$ norm constraint, then a nonnegative matrix factorization (NMF) method is presented, which is based on the bounded Itakura–Saito divergence. The experimental results on both synthetic and real hyperspectral data sets demonstrate the efficacy of the proposed model and the corresponding method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.