Abstract
In this paper, we discuss linear programs in which the data that specify the constraints are subject to random uncertainty. A usual approach in this setting is to enforce the constraints up to a given level of probability. We show that, for a wide class of probability distributions (namely, radial distributions) on the data, the probability constraints can be converted explicitly into convex second-order cone constraints; hence, the probability-constrained linear program can be solved exactly with great efficiency. Next, we analyze the situation where the probability distribution of the data is not completely specified, but is only known to belong to a given class of distributions. In this case, we provide explicit convex conditions that guarantee the satisfaction of the probability constraints for any possible distribution belonging to the given class.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.