Abstract
Clustering algorithms require a large amount of computations of distances among patterns and centers of clusters. Hence, their complexity is dominated by the number of patterns. On the other hand, there is an explosive growth of business or scientific databases storing huge volumes of data. One of the main challenges of today's knowledge discovery systems is their ability to scale up to very large data sets. In this paper, we present a clustering methodology for scaling up any clustering algorithm. It is an iterative process that it is based on partitioning a sample of data into subsets. We, also, present extensive empirical tests that demonstrate the proposed methodology reduces the time complexity and at the same time may maintain the accuracy that would be achieved by a single clustering algorithm supplied with all the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.