Abstract

This paper presents a new distributed control framework to coordinate inverter-interfaced distributed energy resources (DERs) in island microgrids. We show that under bounded load uncertainties, the proposed control method can steer the microgrid to a desired steady state with synchronized inverter frequency across the network and proportional sharing of both active and reactive powers among the inverters. We also show that such convergence can be achieved while respecting constraints on voltage level and branch angle differences. In addition, the proposed controller has several other appealing features, including being robust to microgrid parameters variations and applicable to lossy mesh microgrids with heterogeneous R/X distribution lines. Realistic simulation results are also provided to show the effectiveness of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.