Abstract
All parabolic geometries, i.e., Cartan geometries with homogeneous model a real generalized flag manifold, admit highly interesting classes of distinguished curves. The geodesics of a projective class of connections on a manifold, conformal circles on conformal Riemannian manifolds, and Chern–Moser chains on CR-manifolds of hypersurface type are typical examples. We show that such distinguished curves are always determined by a finite jet in one point, and study the properties of such jets. We also discuss the question when distinguished curves agree up to reparametrization and discuss the distinguished parametrizations in this case. We give a complete description of all distinguished curves for some examples of parabolic geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.