Abstract
Abstract Increased automation has created an impetus to integrate infrastructure with wide-spread connectivity in order to improve e ciency, sustainability, autonomy, and security. Nonetheless, this reliance on connectivity and the inevitability of complexity in this system increase the vulnerabilities to physical faults or degradation and external cyber-threats. However, strategies to counteract faults and cyberattacks would be widely di erent and thus it is vital to not only detect but also to identify the nature of the anomaly that is present in these systems. In this work, we propose a mathematical framework to distinguish between physical faults and cyberattack using a sliding mode based unknown input observer. Finally, we present simulation case studies to distinguish between physical faults and cyberattacks using the proposed distinguishability metric and criterion. The simulation results show that the proposed framework successfully distinguishes between faults and cyberattacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.