Abstract
Scaling matrices are the key ingredient in subdivision schemes and multiresolution analysis, because they fix the way to refine the given data and to manipulate them. It is known that the absolute value of the scaling matrix determinant gives the number of disjoint cosets which is strictly connected with the number of filters needed to analyse a signal and then to computational complexity. Among the classical scaling matrices, we find the family of shearlet matrices that have many interesting properties that make them attractive when dealing with anisotropic problems. Their drawback is the relatively large determinant. The aim of this paper is to find a system of scaling matrices with the same good properties of shearlet matrices but with lower determinant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.