Abstract
A direct method based on the method of normal forms is proposed for constructing the nonlinear normal modes of continuous systems. The proposed method is compared with the method of multiple scales and the methods of Shaw and Pierre and King and Vakakis by applying them to three conservative systems with cubic nonlinearities: (a) a hinged-hinged beam resting on a nonlinear elastic foundation, (b) a model of a relief valve (linear elastic spring attached to a nonlinear spring with a mass), and (c) a simply supported linear beam with nonlinear torsional springs at both ends. In the absence of internal resonance, the constructed nonlinear modes with all four methods are the same. The method of multiple scales seems to be the simplest and the least computationally demanding. The methods of multiple scales and normal forms are applicable to problems with and without internal resonances, whereas the present forms of the methods of Shaw and Pierre and King and Vakakis are not applicable to problems with internal resonances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.