Abstract

We consider spaces of splines in k variables of smoothness r and degree d defined on a polytope in R k which has been divided into simplices. Bernstein-Bézier methods are used to develop a framework for analyzing dimension and basis questions. Dimension formulae and local bases are found for the case r = 0 and general k. The main result of the paper shows the existence of local bases for spaces of trivariate splines (where k = 3) whenever d > 8 r.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.