Abstract
Acousto-optic imaging (AOI) is a hybrid imaging process. By perturbing the to-be-reconstructed tissues with acoustic waves, one introduces the interaction between the acoustic and optical waves, leading to a more stable reconstruction of the optical properties. The mathematical model was described in [], with the radiative transfer equation serving as the forward model for the optical transport. In this paper we investigate the stability of the reconstruction. In particular, we are interested in how the stability depends on the Knudsen number, Kn, a quantity that measures the intensity of the scattering effect of photon particles in a media. Our analysis shows that as Kn decreases to zero, photons scatter more frequently, and since information is lost, the reconstruction becomes harder. To counter this effect, devices need to be constructed so that laser beam is highly concentrated. We will give a quantitative error bound, and explicitly show that such concentration has an exponential dependence on Kn. Numerical evidence will be provided to verify the proof.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.