Abstract

We propose and study a block-iterative projection method for solving linear equations and/or inequalities. The method allows diagonal componentwise relaxation in conjunction with orthogonal projections onto the individual hyperplanes of the system, and is thus called diagonally relaxed orthogonal projections (DROP). Diagonal relaxation has proven useful in accelerating the initial convergence of simultaneous and block-iterative projection algorithms, but until now it was available only in conjunction with generalized oblique projections in which there is a special relation between the weighting and the oblique projections. DROP has been used by practitioners, and in this paper a contribution to its convergence theory is provided. The mathematical analysis is complemented by some experiments in image reconstruction from projections which illustrate the performance of DROP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.