Abstract

This paper describes the potential of tunable strain in field-effect transistors to boost performance of digital logic. Voltage-controlled strain can be imposed on a semiconductor body by the integration of a piezoelectric material improving transistor performance. In this paper, we derive the relations governing the subthreshold swing in such devices to improve the understanding. Using these relations and considering the mechanical and technological boundary conditions, we discuss possible device architectures that employ this principle. Further, we review the recently published experimental and modeling results of this device, and give analytical estimates of the power consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.