Abstract

Traction–separation relations can be used to represent the adhesive interactions of a bimaterial interface during fracture. In this paper, a direct method is proposed to determine mixed-mode traction–separation relations based on a combination of global and local measurements including load-displacement, crack extension, crack tip opening displacement, and fracture resistance curves. Mixed-mode interfacial fracture experiments were conducted using the end loaded split (ELS) configuration for a silicon-epoxy interface, where the epoxy thickness was used to control the phase angle of the fracture mode-mix. Infra-red crack opening interferometry was used to measure the normal crack opening displacements, while both normal and shear components of the crack-tip opening displacements were obtained by digital image correlation. For the resistance curves, an approximate value of the J-integral was calculated based on a beam-on-elastic-foundation model that referenced the measured load-displacement data. A damage-based cohesive zone model with mixed-mode traction–separation relations was then adopted in finite element analyses, with the interfacial properties determined directly from the experiments. With the mode-I fracture toughness from a previous study, the model was used to predict mixed-mode fracture of the silicon/epoxy interfaces for phase angles ranging from $$-42^{\circ }$$ to $$0^{\circ }$$ . Results from experiments using ELS specimens with phase angles that differed from those employed in parameter extraction were used to validate the model. Additional measurements would be necessary to further extend the reach of the model to mode-II dominant conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.