Abstract
Though recent advancements in dc microgrids are largely based on distributed control strategies to enhance reliability and scalability, the absence of a centralized controller to check the global information makes these schemes highly susceptible to cyber attacks. Since false data injection attacks (FDIAs) are considered as a prominent attack methodology in dc microgrids, prior emphasis is usually laid on compromised sensors and controllers only related to dc voltages. Hence, this article first segregates the FDIAs on the output currents into destablization and deception attacks, based on the modeling of attack elements with respect to the consensus theory. Second, a discordant element based detection approach is designed to detect the attacked nodes accurately, using an extended analysis of the cooperative control network. A risk assessment framework for dc microgrids against cyber attacks is provided alongside all the case studies. An evaluation theory is also presented to assist the proposed detection scheme to differentiate between cyber attacks and faults. Further, the proposed detection approach is theoretically verified and validated using simulation and experimental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.