Abstract

Massive binary black holes (MBBHs) in nearby galactic centers, if any, may be nano-Hertz gravitational wave (GW) sources for pulsar timing arrays (PTAs) to detect. Normally the objective GWs for PTA experiments are approximated as plane waves because its sources are presumably located faraway. For nearby GW sources, however, this approximation may be inaccurate due to the curved GW wave front and the GW strength changes along the paths of PTA pulsar pulses. In this paper, we analyze the near-field effect in the PTA detection of nearby sources and find it is important if the source distance is less than a few tens Mpc, and ignoring this effect may lead to a significant signal-to-noise underestimation especially when the source distance is comparable to the pulsar distances. As examples, we assume a nano-Hertz MBBH source located at either the Galactic Center (GC) or the Large Magellanic Cloud (LMC) according to the observational constraints/hints on the MBBH parameter space, and estimate its detectability by current/future PTAs. We find that the GC MBBH may be detectable by the Square Kilometer Array (SKA) PTA. It is challenging for detecting the LMC MBBH; however, if a number ($N\gtrsim10$) of stable millisecond pulsars can be found in the LMC center, the MBBH may be detectable via a PTA formed by these pulsars. We further illustrate the near-field effects on the PTA detection of an isotropic GW background contributed mainly by nearby GW sources, and the resulting angular correlation is similar to the Hellings-Downs curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.