Abstract
With the development and spread of networks, online education has become a new way in education. The online education platform encounters a large number of concurrent visiting, while the system must guarantee network security in the process of online education. The network visiting requests are real-time and dynamic in online education. In order to detect network intrusion and abnormal access in real time and adapt to the dynamic changes of network visiting requests, this paper adopts a data stream-based network intrusion detection method to monitor and manage online education visiting. First, a knowledge library is constructed by normal visiting mode and abnormal visiting mode. Second, the dissimilarity between data point and data cluster is used to measure the similarity between normal mode and abnormal mode. Lastly, the knowledge library is updated to reflect the changes of network in online education system by re-clustering. The proposed method is evaluated on a real dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Systems and Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.