Abstract

Opportunistic spectrum access (OSA) is a key technique enabling the secondary users (SUs) in a cognitive radio (CR) network to transmit over the "spectrum holes" unoccupied by the primary users (PUs). In this paper, we focus on the OSA design in the presence of reactive PUs, where PU's access probability in a given channel is related to SU's past access decisions. We model the channel occupancy of the reactive PU as a 4-state discrete-time Markov chain. We formulate the optimal OSA design for SU throughput maximization as a constrained finite-horizon partially observable Markov decision process (POMDP) problem. We solve this problem by first considering the conventional short-term conditional collision probability (SCCP) constraint. We then adopt a long-term PU throughput (LPUT) constraint to effectively protect the reactive PU transmission. We derive the structure of the optimal OSA policy under the LPUT constraint and propose a suboptimal policy with lower complexity. Numerical results are provided to validate the proposed studies, which reveal some interesting new tradeoffs between SU throughput maximization and PU transmission protection in a practical interaction scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.