Abstract
The derivation of the Vlasov–Maxwell and the Vlasov–Poisson–Poisson equations from Lagrangians of classical electrodynamics is described. The equations of electromagnetohydrodynamics (EMHD) type and electrostatics with gravitation are obtained. We obtain and compare the Lagrange equalities and their generalizations for different types of the Vlasov and EMHD equations. The conveniences of writing the EMHD equations in twice divergent form are discussed. We analyze exact solutions to the Vlasov–Poisson–Poisson equations with the presence of gravitation where we have different types of nonlinear elliptic equations for trajectories of particles with critical mass m2 = e2/G, which has an obvious physical sense, where G denotes the gravitation constant and e is the electron charge. As a consequence we have different behaviors of particles: divergence or collapse of their trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.