Abstract
Chemical post-translational protein-protein conjugation is an important technique with growing applications in biotechnology and pharmaceutical research. Maleimides represent one of the most widely employed bioconjugation reagents. However, challenges associated with the instability of first- and second-generation maleimide technologies are yet to be fully addressed. We report the development of a novel class of maleimide reagents that can undergo on-demand ring-opening hydrolysis of the resulting thio-succinimide. This strategy enables rapid post-translational assembly of protein-protein conjugates. Thio-succinimide hydrolysis, triggered upon application of chemical, photochemical, or enzymatic stimuli, allowed homobifunctional bis-maleimide reagents to be applied in the production of stable protein-protein conjugates, with complete temporal control. Bivalent and bispecific protein-protein dimers constructed from small binders targeting antigens of oncological importance, PD-L1 and HER2, were generated with high purity, stability, and improved functionality compared to monomeric building blocks. The modularity of the approach was demonstrated through elaboration of the linker moiety through a bioorthogonal propargyl handle to produce protein-protein-fluorophore conjugates. Furthermore, extending the functionality of the homobifunctional reagents by temporarily masking reactive thiols included in the linker allowed the assembly of higher order trimeric and tetrameric single-domain antibody conjugates. The potential for the approach to be extended to proteins of greater biochemical complexity was demonstrated in the production of immunoglobulin single-domain antibody conjugates. On-demand control of thio-succinimide hydrolysis combined with the facile assembly of chemically defined homo- and heterodimers constitutes an important expansion of the chemical methods available for generating stable protein-protein conjugates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.