Abstract

Quantum blockades as a nonlinear quantum optical process have been well studied in recent years. Using the quantum trajectory method, we calculate and discuss the output photon number distributions of a single-photon blockade process in a Kerr nonlinear dissipative resonator, revealing that the probability of the single-photon state can be optimized. Then we show through numerical simulations that such a quasi-single-photon source can drastically raise the key rate in the decoy-state quantum key distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.