Abstract

Gaseous signaling molecules, especially carbon monoxide (CO), hold promising potential for disease management. The therapeutic efficacy of CO is closely tied to its concentration, however, maintaining it at optimal levels for both efficacy and safety is highly challenging. To address this, we designed a dual-responsive (pH/red light) nanocomposite hydrogel for on-demand CO release. We first synthesized a hybrid nanocomposite (CaCO3@AgCCN) comprising a CO2 donor (CaCO3) and a photocatalyst (Ag3PO4-decorated carbon dot g-C3N4, AgCCN) capable of converting CO2 to CO. The size of CaCO3 particles was approximately 40 nm, while that of AgCCN was around 150 nm in this nanocomposite. CaCO3@AgCCN was then incorporated into chitosan (CS) to form a nanocomposite hydrogel. This nanocomposite hydrogel could respond to a mildly acidic environment due to bacterial growth, generating CO2 exactly where it is needed (the wound site), which would be subsequently catalytically converted to CO by AgCCN under 630-nm red light illumination to facilitate wound healing. The generated CO, readily controlled by adjusting the CaCO3@AgCCN content in the nanocomposite hydrogel and the red-light illumination time (the CO concentration reaching 4.7 μM after 10-min illumination), has demonstrated strong bactericidal and anti-inflammatory effects, both essential in facilitating wound healing as shown in both in vitro and in vivo studies. Coupled with satisfactory biocompatibility, this dual-responsive nanocomposite hydrogel appears to hold great promise for safe and effective applications of CO in biomedical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.