Abstract

Chiral morphology has been intensively studied in various fields including biology, organic chemistry, pharmaceuticals, and optics. On-demand and dynamic chiral inversion not only cannot be realized in most intrinsically chiral materials but also has mostly been limited to chemical or light-induced methods. Herein, we report reversible real-time magneto-mechanical chiral inversion of a three-dimensional (3D) micropillar array between achiral, clockwise, and counterclockwise chiral arrangements. Inspired by the flower corolla, achiral arrays of five and six radially arranged semicylindrical micropillars were employed as model systems to investigate the dynamic symmetry properties of arrays consisting of odd and even numbers of micropillars, respectively. Each micropillar underwent twisting actuation with a different twisting angle depending on the angle with the magnetic field direction and magnetic flux density, thereby collectively changing the chirality from the achiral to chiral state. Importantly, the morphological handedness of the micropillars was inverted within a few seconds by manipulating the direction of the magnetic field. A chiral morphology consisting of magnetically twisted micropillars was shape-fixed by the introduction of a polymeric binder. This binder could be simply washed off to return the shape-fixed twisted micropillars to their initial straight state. Magnetically programmable and reproducible 3D flower corolla-like micropillar arrays are expected to expand the potential of shape-reconfigurable devices that require real-time chiral manipulation in ambient environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.